Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Cardiovascular Ultrasound ; : 189-195, 2014.
Article in English | WPRIM | ID: wpr-55936

ABSTRACT

BACKGROUND: Aortic banding and debanding models have provided useful information on the development and regression of left ventricular hypertrophy (LVH). In this animal study, we aimed to evaluate left ventricular (LV) deformation related to the development and regression of LVH. METHODS: Minimally invasive ascending aorta banding was performed in rats (10 Sprague Dawley rats, 7 weeks). Ten rats underwent a sham operation. Thirty-five days later, the band was removed. Echocardiographic and histopathologic analysis was assessed at pre-banding, 35 days of banding and 14 days of debanding. RESULTS: Banding of the ascending aorta created an expected increase in the aortic velocity and gradient, which normalized with the debanding procedure. Pressure overload resulted in a robust hypertrophic response as assessed by gross and microscopic histology, transthoracic echocardiography [heart weight/tibia length (g/m); 21.0 +/- 0.8 vs. 33.2 +/- 2.0 vs. 26.6 +/- 2.8, p < 0.001]. The circumferential (CS) and radial strains were not different between the groups. However, there were significant differences in the degree of fibrosis according to the banding status (fibrosis; 0.10 +/- 0.20% vs. 5.26 +/- 3.12% vs. 4.03 +/- 3.93%, p = 0.003), and global CS showed a significant correlation with the degree of myocardial fibrosis in this animal model (r = 0.688, p = 0.028). CONCLUSION: In this animal study, simulating a severe LV pressure overload state, a significant increase in the LV mass index did not result in a significant reduction in the LV mechanical parameters. The degree of LV fibrosis, which developed with pressure overload, was significantly related to the magnitude of left ventricular mechanics.


Subject(s)
Animals , Rats , Aorta , Echocardiography , Fibrosis , Hypertrophy, Left Ventricular , Mechanics , Models, Animal , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL